logo_aapc_new_web_2logo_aapc_new_weblogo_aapc_new_web_2logo_aapc_new_web_2
  • Inicio
  • Institucional
    • Autoridades
    • Miembros
    • Contacto
  • Publicaciones
    • Libros
    • Revista CeI
    • Revista CeI Reseñas
    • El foro de AAPC
    • SERIE FUTUROS
    • Reseñas del fin del mundo
    • Semblanzas homenaje
    • Rev. de las Asociaciones Científicas
    • Índice de temas publicados
  • Noticias
    • Noticias institucionales
    • Destacadas en C&T
  • EPAC
✕
NUEVO AVANCE PARA ENTENDER EL ORIGEN DE LOS GENES
11 abril, 2018
PRIMERA VISUALIZACIÓN DIRECTA DEL CUADRADO DE LA FUNCIÓN DE ONDA DE LA MOLÉCULA DE HIDRÓGENO
12 abril, 2018
12 abril, 2018


Investigadores españoles han desarrollado un nuevo método para crear una membrana de grafeno con poros cuyo tamaño, forma y densidad se pueden modificar con precisión atómica. El resultado es un grafeno poroso con propiedades eléctricas y que actúa como un tamiz molecular, dos ventajas que se podrán aplicar en la fabricación de avanzados filtros y sensores.

Un equipo del Instituto Catalán de Nanociencia y Nanotecnología (ICN2), el Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS), la Universidad de Santiago de Compostela y el Donostia International Physics Center (DIPC) han sintetizado con éxito una membrana de grafeno con poros cuyo tamaño, forma y densidad se pueden modificar en la nanoescala con precisión atómica.

Este trabajo abre el potencial de este preciado material a aplicaciones en electrónica, filtros y sensores, según el equipo, que ya ha solicitado una patente sobre la membrana de grafeno poroso. Los resultados se publican esta semana en la revista Science, en un artículo encabezado por el profesor ICREA Aitor Mugarza del ICN2 y el profesor Diego Peña del CiQUS, con el investigador César Moreno como primer autor.

La presencia de poros en el grafeno puede modificar sus propiedades básicas, empezando por hacerlo permeable y útil como tamiz. Se trata de un cambio de estructura que, combinado con las propiedades intrínsecas de este material de un átomo de grosor y más fuerte que el diamante, lo convierte en un excelente candidato para desarrollar filtros más duraderos, selectivos y energéticamente eficientes para sustancias extremadamente pequeñas, como gases de efecto invernadero, sales o biomoléculas.

Se produce un segundo cambio importante, quizás menos intuitivo, cuando el espaciado entre los poros queda también reducido a unos pocos átomos. El grafeno pasa de ser un semimetal a un semiconductor, lo cual abre la puerta a su uso en dispositivos electrónicos, donde sustituiría los componentes basados en silicio más voluminosos y rígidos que se usan hoy en día.

No obstante, aunque todo esto es posible en teoría, producir un material con estas propiedades requiere de una precisión que todavía no está al alcance de las técnicas actuales de fabricación y probablemente nunca lo estará. El problema es la forma de abordarlo: perforar los poros en un material de un átomo de grosor es una tarea de enorme complejidad.

Por eso los investigadores han adoptado una estrategia bottom-up (de abajo hacia arriba) basada en los principios del autoensamblado molecular y de polimerización en 2D. Consiguen así construir la malla de grafeno con los nanoporos ya integrados desde el inicio. Para que esta estrategia funcione se precisa una molécula precursora muy específica, diseñada para responder ante determinados estímulos, que se utilizará para ensamblar un gran puzzle.

De Galicia a Cataluña y Euskadi
En este trabajo los precursores se diseñaron y produjeron por especialistas en química sintética del CiQUS, en Santiago de Compostela, y se llevaron al ICN2 en Barcelona para ser ensamblados formando un grafeno nanoporoso mediante el método bottom-up.

Las moléculas precursoras se sometieron a varias rondas de calentamiento a altas temperaturas sobre una superficie de oro que sirvió de catalizador de las reacciones mediante las que las moléculas polimerizaron formando “nanotiras” de grafeno. Estas estructuras se enlazaron después lateralmente, consiguiendo así la estructura de malla con nanoporos de tamaño y espaciado uniforme.

Simulado en el DIPC  (San Sebastián) y testado en el ICN2, el resultado de este proceso es un nuevo tipo de grafeno que presenta unas propiedades eléctricas parecidas a las del silicio que, además, se puede usar como un tamiz molecular altamente selectivo.

Juntas, estas dos propiedades apuntan al desarrollo de dispositivos que actúen simultáneamente como filtro y sensor permitiendo no solo la separación de moléculas específicas, sino también bloquear y monitorizar el paso de estas moléculas por los nanoporos usando un campo eléctrico.

Aplicaciones biomédicas
Esta señal eléctrica permitiría obtener información cualitativa y cuantitativa sobre qué moléculas pasan en cada momento, algo que podría aplicarse por ejemplo en secuenciadores de ADN más eficientes.

Las aplicaciones de una malla de grafeno nanoporoso con precisión atómica son numerosas y variadas. Van desde medir y combatir la presencia de elementos contaminantes hasta la desalinización de aguas, pasando por aplicaciones biomédicas en las que una membrana tan fina, flexible y biocompatible se podría usar para recuperar la función de órganos como el riñón, el filtro natural por excelencia.

Referencia bibliográfica:
César Moreno, Manuel Vilas-Varela, Bernhard Kretz, Aran Garcia-Lekue, Marius V. Costache, Markos Paradinas, Mirko Panighel, Gustavo Ceballos, Sergio O. Valenzuela, Diego Peña, and Aitor Mugarza. «Bottom-up synthesis of multifunctional nanoporous graphene». Science 360: 6385, 13 de abril 2018. DOI: 10.1126/science.aar2009.

12-04-18 | SINC |

Artículos relacionados

10 noviembre, 2022

IDENTIFICADAS LAS CÉLULAS RESPONSABLES DE LA RECAÍDA EN EL CÁNCER DE COLON


Leer más
7 noviembre, 2022

RECONSTRUYEN MEDIANTE LA GENÉTICA HUMANA LA COMPLEJA HISTORIA DE CÓMO SE POBLÓ AMÉRICA


Leer más
7 noviembre, 2022

LOS MISTERIOS DE LOS RAYOS CÓSMICOS SE RESUELVEN BAJO EL HIELO DE LA ANTÁRTIDA


Leer más

Secciones especiales

  • Grandes temas ambientales
  • Rincón matemático

Sobre la AAPC

  • Quiénes somos
  • Autoridades
  • Miembros
  • Publicaciones
  • Historia de la AAPC

Acerca del EPAC

  • Sobre nosotros
  • Jornadas abiertas
  • Asociaciones
  • Declaraciones y Comunicados

Contacto

  • Av. Alvear 1711, 4º piso.
    Buenos Aires, Argentina.
    TE: (+54) (11) 4811-2998
    Lunes a viernes de 10 a 17 h.

La AAPC en las redes sociales

Copyright © 2017 ASOCIACIÓN ARGENTINA PARA EL PROGRESO DE LAS CIENCIAS. Todos los derechos reservados. Lo expresado por los autores o anunciantes, en los artículos o avisos publicados, es de exclusiva responsabilidad de los mismos. El contenido de esta página web está protegido por las leyes de propiedad intelectual.