logo_aapc_new_web_2logo_aapc_new_weblogo_aapc_new_web_2logo_aapc_new_web_2
  • Inicio
  • Institucional
    • Autoridades
    • Miembros
    • Contacto
  • Publicaciones
    • Libros
    • Revista CeI
    • Revista CeI Reseñas
    • El foro de AAPC
    • SERIE FUTUROS
    • Reseñas del fin del mundo
    • Semblanzas homenaje
    • Rev. de las Asociaciones Científicas
    • Índice de temas publicados
  • Noticias
    • Noticias institucionales
    • Destacadas en C&T
  • EPAC
✕
CORONAVIRUS: ¿POR QUÉ CON ALGUNAS ENFERMEDADES DESARROLLAMOS INMUNIDAD PERMANENTE Y CON OTRAS NO? (Y EL GRAN INTERROGANTE SOBRE LA COVID-19)
17 agosto, 2020
UNA SUPERNOVA PROVOCÓ UNA EXTINCIÓN MASIVA EN LA TIERRA
20 agosto, 2020
20 agosto, 2020

Párrafo 


[


[

Una nueva tecnología para la realización de entrelazamientos potencia el desarrollo definitivo del Internet cuántico: es compatible con las redes de fibra óptica sin perder eficiencia.

Mediante una nueva técnica para el desarrollo de entrelazamientos cuánticos, que ya ha sido probada con éxito en distancias de hasta 20 kilómetros, un equipo de científicos de la Universidad Nacional de Yokohama y otros institutos japoneses ha logrado un importante avance en el desarrollo del Internet cuántico. Un aspecto clave es que la tecnología se implementa con eficacia en redes de fibra óptica como las empleadas en la actualidad.

De acuerdo a una nota de prensa, los especialistas han logrado superar uno de los mayores escollos para el avance del Internet cuántico: su compatibilidad con las redes de fibra óptica que se utilizan hoy en día. Este “cuello de botella” se debe a que las formas convencionales de producir entrelazamientos, imprescindibles para vincular entre sí a los ordenadores cuánticos, son poco compatibles con las redes de telecomunicaciones de fibra óptica.

Es importante recordar que el entrelazamiento cuántico es uno de los fenómenos más impactantes y trascendentes en el mundo cuántico. Se genera cuando un par de partículas o cúbits se “fusionan” de manera indisoluble al conectar sus estados cuánticos. A partir de ese momento, cualquier medición realizada en un cúbit se correlacionará con una medición en el otro cúbit, sin importar la distancia que los separe.

Este increíble fenómeno hace posible transferir información entre dos ubicaciones mediante fotones entrelazados. De esta forma, los dos extremos que se comunican poseen cada uno la mitad de los fotones entrelazados, abriendo la posibilidad para desarrollar intercambios de información mucho más rápidos y seguros que los realizados con las tecnologías actuales, gracias al entrelazamiento compartido.

Un desafío superado
Sin embargo, estos entrelazamientos presentan numerosos problemas técnicos en su aplicación práctica, debido a las pérdidas de información. Ahora, el equipo japonés ha solucionado este inconveniente al mejorar la forma tradicional de realizar entrelazamientos cuánticos.

Durante décadas se han empleado cristales que dividen los fotones individuales de alta energía en pares de fotones entrelazados, con la mitad de la carga energética original en cada caso. Se trata de una tecnología pensada para un contexto de laboratorio, pero los especialistas buscan ahora metodologías con aplicación práctica.

Aunque esta técnica, denominada “conversión paramétrica espontánea descendente” (SPDC, según sus siglas en inglés) es útil en los experimentos de información cuántica, resulta escasamente compatible con las comunicaciones cuánticas de banda ancha que se requieren para hacer realidad esta nueva etapa de la red de redes.

Los investigadores japoneses mejoraron esta técnica colocando los cristales indicados anteriormente en una cavidad óptica. Gracias a esta nueva estructura, fue posible propagar con éxito fotones entrelazados a una distancia de 10 kilómetros en una red de fibra óptica, que posteriormente alcanzaron los 20 kilómetros gracias a la acción de un repetidor cuántico.

El desafío a futuro es implementar la técnica a través de múltiples nodos repetidores, permitiendo así establecer la comunicación en distancias mucho más largas. De concretarse este nuevo paso, se estará cada vez más cerca de lograr que el Internet cuántico sea una realidad palpable.

Referencia
Two-photon comb with wavelength conversion and 20-km distribution for quantum communication. Niizeki, K., Yoshida, D., Ito, K. et al. Communications Physics (2020).DOI:https://doi.org/10.1038/s42005-020-00406-1

Pablo Javier Piacente

20-08-2020 | Tendencias21 |

[/three_fifth]

Artículos relacionados

10 noviembre, 2022

IDENTIFICADAS LAS CÉLULAS RESPONSABLES DE LA RECAÍDA EN EL CÁNCER DE COLON


Leer más
7 noviembre, 2022

RECONSTRUYEN MEDIANTE LA GENÉTICA HUMANA LA COMPLEJA HISTORIA DE CÓMO SE POBLÓ AMÉRICA


Leer más
7 noviembre, 2022

LOS MISTERIOS DE LOS RAYOS CÓSMICOS SE RESUELVEN BAJO EL HIELO DE LA ANTÁRTIDA


Leer más

Secciones especiales

  • Grandes temas ambientales
  • Rincón matemático

Sobre la AAPC

  • Quiénes somos
  • Autoridades
  • Miembros
  • Publicaciones
  • Historia de la AAPC

Acerca del EPAC

  • Sobre nosotros
  • Jornadas abiertas
  • Asociaciones
  • Declaraciones y Comunicados

Contacto

  • Av. Alvear 1711, 4º piso.
    Buenos Aires, Argentina.
    TE: (+54) (11) 4811-2998
    Lunes a viernes de 10 a 17 h.

La AAPC en las redes sociales

Copyright © 2017 ASOCIACIÓN ARGENTINA PARA EL PROGRESO DE LAS CIENCIAS. Todos los derechos reservados. Lo expresado por los autores o anunciantes, en los artículos o avisos publicados, es de exclusiva responsabilidad de los mismos. El contenido de esta página web está protegido por las leyes de propiedad intelectual.