logo_aapc_new_web_2logo_aapc_new_weblogo_aapc_new_web_2logo_aapc_new_web_2
  • Inicio
  • Institucional
    • Autoridades
    • Miembros
    • Contacto
  • Publicaciones
    • Libros
    • Revista CeI
    • Revista CeI Reseñas
    • El foro de AAPC
    • SERIE FUTUROS
    • Reseñas del fin del mundo
    • Semblanzas homenaje
    • Rev. de las Asociaciones Científicas
    • Índice de temas publicados
  • Noticias
    • Noticias institucionales
    • Destacadas en C&T
  • EPAC
✕
LAS CÉLULAS TANTEAN SU ENTORNO PARA EXPLORARLO
7 diciembre, 2017
CONSIGUEN UN SIMULADOR CUÁNTICO MAGNÉTICO CON MÁS DE 50 CÚBITS
10 diciembre, 2017
8 diciembre, 2017


Se abren nuevos horizontes para los ordenadores cuánticos y la investigación biológica

Investigadores norteamericanos han comprobado por vez primera que el entrelazamiento cuántico funciona también en un sistema biológico. Entrelazaron la polaridad de dos fotones liberados por una proteína y al separarlos mostraban la misma polarización. El descubrimiento abre la puerta a ordenadores cuánticos construidos sobre base biológica y nuevos territorios a la investigación sobre los sistemas vivos.

Investigadores de la Northwestern University han creado por primera vez un entrelazamiento cuántico en un sistema biológico y comprobado que la mecánica cuántica, efectivamente, desempeña un papel importante en la biología, tal como había anticipado hace casi 75 años el Premio Nobel de Física Erwin Schrödinger. Los resultados se publican en Nature Communications.

El   entrelazamiento cuántico  es uno de los fenómenos más desconcertantes de la mecánica cuántica. Cuando dos partículas, como los átomos, los fotones o los electrones, se entrelazan, experimentan un vínculo inexplicable que se mantiene incluso si las partículas están en lados opuestos del universo.

Mientras están entrelazadas, el comportamiento de las partículas está ligado entre sí. Si se encuentra una partícula girando en una dirección, por ejemplo, entonces la otra partícula cambia instantáneamente su giro para alinearse con ella, siguiendo el comportamiento propio del entrelazamiento cuántico.

El estudio se basó en la así llamada proteína verde fluorescente, producida por la medusa Aequorea victoria, que emite fluorescencia en la zona verde del espectro visible. El gen que codifica esta proteína está aislado y se utiliza habitualmente en biología molecular como marcador.

Los investigadores consiguieron entrelazar la polaridad de dos de los fotones liberados por esta proteína y al medir el estado de ambos fotones, una vez separados, obtuvieron siempre el mismo resultado.

Fotones de una proteína entrelazados
De esta forma consiguieron comprobar por primera vez que los sistemas cuánticos entrelazados funcionan también teniendo como base un sustrato biológico, en este caso una proteína.

Además, descubrieron que la estructura de la proteína evita que el entrelazamiento cuántico se pierda por su interacción con el medio, una dificultad con la que se encuentra el entrelazamiento cuántico de partículas materiales, no de procedencia biológica.

«Cuando medí la polarización vertical de una partícula, sabíamos que sería lo mismo en la otra», explica en autor principal de esta investigación, Prem Kumar, en un   comunicado.  «Si medimos la polarización horizontal de una partícula, podemos predecir la polarización horizontal en la otra partícula. Creamos un estado entrelazado que se correlacionó todas las posibilidades simultáneamente».

El entrelazamiento cuántico implica que cualquier medición realizada en la primera partícula proporciona información sobre el resultado de la medición de la segunda partícula. Gracias a esta investigación, este principio se ha comprobado por primera vez en el campo de la biología.

Aplicaciones biológicas
Ahora que han demostrado que es posible crear enredos cuánticos a partir de partículas biológicas, Kumar y su equipo planean crear un sustrato biológico de partículas entrelazadas, que podría usarse para construir un ordenador cuántico. Luego, buscarán entender si un sustrato biológico funciona de manera más eficiente que uno sintético.

Los autores de esta investigación pretenden también aprovechar las características y potencialidades del entrelazamiento cuántico para aplicaciones en biología porque estos estados cuánticos permiten aplicaciones que de otro modo serían imposibles.

Creen que el nuevo descubrimiento abrirá las puertas para la explotación de herramientas biológicas basadas en la mecánica cuántica y en las comunicaciones cuánticas: debido a que las partículas pueden comunicarse entre sí sin cables, podrían usarse para enviar mensajes seguros en el seno de sistemas biológicos.

«Otros investigadores han intentado entrelazar un conjunto cada vez mayor de átomos o fotones para desarrollar sustratos sobre los cuales diseñar y construir un ordenador cuántico», explica Kumar. «Mi laboratorio se está preguntando si podemos construir estas máquinas en un sustrato biológico», concluye.

El entrelazamiento cuántico ha sido objeto de otros importantes descubrimientos recientemente. Se ha comprobado que funciona a   1.400 kilómetros de distancia  e incluso   bajo el agua,  así como que es capaz de generar al menos   100 dimensiones cromáticas.  Asimismo, se ha comprobado que los electrones entrelazados se comunican entre sí a una   velocidad superior a la de la luz,  que el   caos clásico y el entrelazamiento cuántico están relacionados o que el   espacio-tiempo emerge del entrelazamiento cuántico.

Referencia
Generation of photonic entanglement in green fluorescent proteins.   Nature Communications 8, Article number: 1934 (2017). doi:10.1038/s41467-017-02027-9

08-12-17 | Tendencias21 |

Artículos relacionados

10 noviembre, 2022

IDENTIFICADAS LAS CÉLULAS RESPONSABLES DE LA RECAÍDA EN EL CÁNCER DE COLON


Leer más
7 noviembre, 2022

RECONSTRUYEN MEDIANTE LA GENÉTICA HUMANA LA COMPLEJA HISTORIA DE CÓMO SE POBLÓ AMÉRICA


Leer más
7 noviembre, 2022

LOS MISTERIOS DE LOS RAYOS CÓSMICOS SE RESUELVEN BAJO EL HIELO DE LA ANTÁRTIDA


Leer más

Secciones especiales

  • Grandes temas ambientales
  • Rincón matemático

Sobre la AAPC

  • Quiénes somos
  • Autoridades
  • Miembros
  • Publicaciones
  • Historia de la AAPC

Acerca del EPAC

  • Sobre nosotros
  • Jornadas abiertas
  • Asociaciones
  • Declaraciones y Comunicados

Contacto

  • Av. Alvear 1711, 4º piso.
    Buenos Aires, Argentina.
    TE: (+54) (11) 4811-2998
    Lunes a viernes de 10 a 17 h.

La AAPC en las redes sociales

Copyright © 2017 ASOCIACIÓN ARGENTINA PARA EL PROGRESO DE LAS CIENCIAS. Todos los derechos reservados. Lo expresado por los autores o anunciantes, en los artículos o avisos publicados, es de exclusiva responsabilidad de los mismos. El contenido de esta página web está protegido por las leyes de propiedad intelectual.