logo_aapc_new_web_2logo_aapc_new_weblogo_aapc_new_web_2logo_aapc_new_web_2
  • Inicio
  • Institucional
    • Autoridades
    • Miembros
    • Contacto
  • Publicaciones
    • Libros
    • Revista CeI
    • Revista CeI Reseñas
    • El foro de AAPC
    • SERIE FUTUROS
    • Reseñas del fin del mundo
    • Semblanzas homenaje
    • Rev. de las Asociaciones Científicas
    • Índice de temas publicados
  • Noticias
    • Noticias institucionales
    • Destacadas en C&T
  • EPAC
✕
UN TELESCOPIO DE NEUTRINOS BAJO EL MEDITERRÁNEO PARA ‘CAZAR’ LA MATERIA OSCURA
26 abril, 2017
CÓMO OCULTAR INFORMACIÓN CONFIDENCIAL DE FORMA AUTOMÁTICA
27 abril, 2017
27 abril, 2017


Un descubrimiento realizado en el   CERN  abre una nueva dimensión para el estudio de las propiedades de este estado fundamental de la materia del cual surgió nuestro Universo: las colisiones entre protones que se producen en el   Gran Colisionador de Hadrones (LHC) siguen en ocasiones patrones parecidos a los de las colisiones entre núcleos pesados. El hallazgo emociona a los científicos.

La colaboración científica del experimento   ALICE  publica en   Nature Physics  un artículo en el que muestra que las colisiones entre protones que se producen en el Gran Colisionador de Hadrones (LHC), el mayor acelerador de partículas del mundo situado en la sede del CERN en Ginebra (Suiza), siguen en ocasiones patrones parecidos a los de las colisiones entre núcleos pesados.

Este comportamiento se observó mediante el estudio de los llamados ‘hadrones extraños’ en ciertas colisiones entre protones donde se producen gran número de partículas. Los hadrones extraños son partículas bien conocidas (Kaon, Lambda, Xi, Omega), que contienen al menos un quark extraño.

El incremento en la producción de partículas extrañas es un fenómeno bien conocido en el plasma de quarks y gluones, el estado de la materia de altísima temperatura en el que se encontraba todo el Universo unas millonésimas de segundo después del Big Bang. Habitualmente se estudia este estado en colisiones de núcleos atómicos pesados en el LHC. Es la primera vez que se observa, sin embargo, en colisiones entre protones, donde no se esperaba alcanzar las condiciones de alta temperatura necesarias.

«Estamos muy emocionados con este descubrimiento», dice Federico Antinori, portavoz de la colaboración ALICE. «Estamos aprendiendo mucho sobre este estado primigenio de la materia, y ser capaces de aislar fenómenos similares al plasma de quarks y gluones en un sistema más pequeño y simple, como son las colisiones entre dos protones, abre una nueva dimensión para el estudio de las propiedades de este estado fundamental de la materia del cual surgió nuestro Universo».

El estudio del plasma de quarks y gluones permite investigar las propiedades de la llamada interacción fuerte, una de las cuatro fuerzas fundamentales de la naturaleza. La producción de estas partículas ‘extrañas’ es una manifestación de este estado de la materia. Para crear el plasma de quarks y gluones se necesitan unas condiciones de temperaturas y densidades extremas, de tal manera que la materia ordinaria sufre una transición a una nueva fase en la que los quarks y los gluones se liberan y no se encuentran confinados dentro de los hadrones.

Estas condiciones se producen en el LHC haciendo chocar núcleos pesados (formados por muchos protones y neutrones) a altas energías. En este medio de alta densidad de energía, la producción de quarks extraños, más pesados que los que componen la materia visible y, por tanto, más difíciles de crear en condiciones normales, se parece a la de otros quarks más ligeros. Este es el fenómeno que se ha visto ahora por primera vez también en colisiones entre protones.

MULTIPLICIDAD
En concreto, los nuevos resultados muestran que la tasa de producción de estos hadrones extraños aumenta con la multiplicidad (el número de partículas producido en el choque) de forma más rápida que la producción de otras partículas generadas en la misma colisión. Aunque la estructura del protón no incluye quarks extraños, los datos muestran también que cuanto mayor es el número de este tipo de quarks en los hadrones creados, más se incrementa su producción.

No se ha observado correlación entre este fenómeno y la energía de la colisión o las masas de las partículas creadas, lo que indica que el incremento viene determinado por el contenido de quarks extraños de las partículas producidas. La producción de ‘extrañeza’ se determina en la práctica contando el número de partículas extrañas producido en una colisión determinada y calculando el balance entre estas y otras ‘no extrañas’.

El incremento en la producción de extrañeza se ha sugerido como una posible consecuencia de la formación del plasma de quarks y gluones desde principios de los ochenta, y se descubrió en los noventa en las colisiones entre núcleos del acelerador Super Proton Sincrotron del CERN.

Otra posible consecuencia de la formación del plasma de quarks y gluones es la correlación espacial de las partículas a lo largo de una estructura longitudinal en forma de cresta. Tras su detección en colisiones entre núcleos pesados, esta estructura se ha visto también en las colisiones entre protones con alta multiplicidad del LHC, proporcionando la primera indicación de que las colisiones entre protones podrían presentar propiedades como las de los núcleos pesados.

Estudiar estos procesos de forma más precisa será clave para entender los mecanismos microscópicos del plasma de quarks y gluones, así como el comportamiento colectivo de las partículas en pequeños sistemas. El experimento ALICE fue diseñado para estudiar colisiones de núcleos pesados. También estudia colisiones entre protones, que ofrecen en principio una referencia para analizar las colisiones entre núcleos pesados. Las medidas publicadas se obtuvieron con los datos de las colisiones entre protones a 7 TeV obtenidas por el LHC durante su primer periodo de funcionamiento (Run 1).

27-04-17 | Tendencias21 |

Artículos relacionados

10 noviembre, 2022

IDENTIFICADAS LAS CÉLULAS RESPONSABLES DE LA RECAÍDA EN EL CÁNCER DE COLON


Leer más
7 noviembre, 2022

RECONSTRUYEN MEDIANTE LA GENÉTICA HUMANA LA COMPLEJA HISTORIA DE CÓMO SE POBLÓ AMÉRICA


Leer más
7 noviembre, 2022

LOS MISTERIOS DE LOS RAYOS CÓSMICOS SE RESUELVEN BAJO EL HIELO DE LA ANTÁRTIDA


Leer más

Secciones especiales

  • Grandes temas ambientales
  • Rincón matemático

Sobre la AAPC

  • Quiénes somos
  • Autoridades
  • Miembros
  • Publicaciones
  • Historia de la AAPC

Acerca del EPAC

  • Sobre nosotros
  • Jornadas abiertas
  • Asociaciones
  • Declaraciones y Comunicados

Contacto

  • Av. Alvear 1711, 4º piso.
    Buenos Aires, Argentina.
    TE: (+54) (11) 4811-2998
    Lunes a viernes de 10 a 17 h.

La AAPC en las redes sociales

Copyright © 2017 ASOCIACIÓN ARGENTINA PARA EL PROGRESO DE LAS CIENCIAS. Todos los derechos reservados. Lo expresado por los autores o anunciantes, en los artículos o avisos publicados, es de exclusiva responsabilidad de los mismos. El contenido de esta página web está protegido por las leyes de propiedad intelectual.