logo_aapc_new_web_2logo_aapc_new_weblogo_aapc_new_web_2logo_aapc_new_web_2
  • Inicio
  • Institucional
    • Autoridades
    • Miembros
    • Contacto
  • Publicaciones
    • Libros
    • Revista CeI
    • Revista CeI Reseñas
    • El foro de AAPC
    • SERIE FUTUROS
    • Reseñas del fin del mundo
    • Semblanzas homenaje
    • Rev. de las Asociaciones Científicas
    • Índice de temas publicados
  • Noticias
    • Noticias institucionales
    • Destacadas en C&T
  • EPAC
✕
UN SUEÑO DE EINSTEIN SE HACE REALIDAD: PESAR UNA ESTRELLA CON LA GRAVEDAD
8 junio, 2017
SIN RASTRO DE LA PARTÍCULA QUE HIZO EXPLOTAR AL UNIVERSO
13 junio, 2017
9 junio, 2017


Partiendo de experimentos y modelados, investigadores de la   Universidad Federal de São Carlos (UFSCar), en São Paulo, Brasil, de la   Universidad de Wurzburgo,  en Alemania, y de la   Universidad de Carolina del Sur,  en Estados Unidos, crearon un transistor capaz de simular algunas funcionalidades de las neuronas. El dispositivo, que posee partes micrométricas y partes nanométricas, logra ver la luz, contar y almacenar información en su propia estructura, prescindiendo de una unidad complementaria de memoria.

Su descripción aparece en el artículo intitulado Nanoscale Tipping Bucket Effect in a Cuantum Dot Transistor-Based Counter, publicado en la revista   Nano Letters.  La investigación contó con el apoyo de la Fundaçao de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP) en el marco de los proyectos intitulado Propiedades de transporte y computación cuántica en nanoestructuras, Network for nano-optics and nano-electronics y Fenómenos ópticos y de transporte en nanodispositivos.

«En este trabajo demostramos la capacidad de los transistores basados en puntos cuánticos [quantum dots] de ejecutar operaciones complejas directamente en la memoria. Esto puede derivar en el desarrollo de nuevos tipos de dispositivos y circuitos computacionales, en los cuales las unidades de memoria estén combinadas con las unidades de procesamiento lógico, ahorrando espacio, tiempo y consumo de energía», dijo Victor Lopez Richard, docente del Departamento de Física de la UFSCar y uno de los coordinadores del estudio.

Este transistor se elaboró empleando técnicas de crecimiento epitaxial, es decir, por sedimentación de capas ultradelgadas sobre un sustrato cristalino. En esta base microscópica, gotas nanoscópicas de arseniuro de indio funcionan como puntos cuánticos, confinando electrones en estados cuantizados. Las funcionalidades de memoria son producto de la dinámica de carga y descarga eléctrica de los puntos cuánticos, que engendra niveles de corriente con una periodicidad modulable a través del voltaje aplicado en las puertas [gates] del transistor o de la luz absorbida por los puntos.

«La gran virtud de nuestro dispositivo consiste en que posee una memoria intrínseca, almacenada como carga eléctrica en el interior de los puntos cuánticos. El quid de la cuestión radica en controlar la dinámica de esas cargas, de manera tal que el transistor pueda manifestar distintos estados. Sus funcionalidades abarcan las capacidades de contar, recordar y realizar las operaciones aritméticas sencillas que normalmente realizan las calculadoras. Pero a escalas de espacio, tiempo y energía incomparablemente menores», informó Lopez Richard.

Según el investigador, no se espera que este transistor se utilice en computación cuántica, pues ésta se basa en otros efectos cuánticos, como el ‘entrelazamiento’. El entrelazamiento se produce cuando se generan o interactúan pares o grupos de partículas de modo tal que el estado cuántico de cada partícula no puede describirse independientemente, sino que depende del conjunto, por más alejadas que se encuentren dichas partículas unas con relación a las otras.

Pero sí puede llevar a la elaboración de una plataforma utilizable en aparatos tales como contadores o calculadoras, con la memoria intrínsecamente vinculada al propio transistor, y todas las funcionalidades disponibles dentro del mismo sistema a escala nanométrica, sin necesidad de contar con otro espacio del almacenamiento.

«Asimismo, como los puntos cuánticos son sensibles a los fotones, podemos decir que el transistor es capaz de ver la luz. Y al igual que el voltaje eléctrico, la absorción fotónica permite controlar la dinámica de carga y descarga de los puntos cuánticos, simulando las respuestas sinápticas y algunas funcionalidades neurales», añadió.

Pero será necesario realizar nuevas investigaciones antes de que este transistor pueda utilizarse como recurso tecnológico. Sucede que, por ahora, sólo funciona a temperaturas extremadamente bajas, del orden de los 4 kelvin, correspondientes a la temperatura del helio líquido.

«Nuestra meta apunta a que sea funcional a otros niveles, incluso a temperatura ambiente. Para ello los espacios electrónicos del sistema deberán estar lo suficientemente espaciados, de manera tal de que no se vean afectados por la temperatura. Habrá que controlar mejor también las técnicas de síntesis y crecimiento del material, a los efectos de sintonizar los canales de carga y descarga. Y también la cuantización de los estados almacenados en los puntos cuánticos», acotó Lopez Richard.

09-06-17 | MIOD / NCyT |

Artículos relacionados

10 noviembre, 2022

IDENTIFICADAS LAS CÉLULAS RESPONSABLES DE LA RECAÍDA EN EL CÁNCER DE COLON


Leer más
7 noviembre, 2022

RECONSTRUYEN MEDIANTE LA GENÉTICA HUMANA LA COMPLEJA HISTORIA DE CÓMO SE POBLÓ AMÉRICA


Leer más
7 noviembre, 2022

LOS MISTERIOS DE LOS RAYOS CÓSMICOS SE RESUELVEN BAJO EL HIELO DE LA ANTÁRTIDA


Leer más

Secciones especiales

  • Grandes temas ambientales
  • Rincón matemático

Sobre la AAPC

  • Quiénes somos
  • Autoridades
  • Miembros
  • Publicaciones
  • Historia de la AAPC

Acerca del EPAC

  • Sobre nosotros
  • Jornadas abiertas
  • Asociaciones
  • Declaraciones y Comunicados

Contacto

  • Av. Alvear 1711, 4º piso.
    Buenos Aires, Argentina.
    TE: (+54) (11) 4811-2998
    Lunes a viernes de 10 a 17 h.

La AAPC en las redes sociales

Copyright © 2017 ASOCIACIÓN ARGENTINA PARA EL PROGRESO DE LAS CIENCIAS. Todos los derechos reservados. Lo expresado por los autores o anunciantes, en los artículos o avisos publicados, es de exclusiva responsabilidad de los mismos. El contenido de esta página web está protegido por las leyes de propiedad intelectual.